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In this paper, we study continuity properties of the mapping P: (x, A) � PA (x)
in a nonreflexive Banach space where PA is the metric projection onto A. Our
results extend the existing convergence theorems on the best approximations in a
reflexive Banach space to nonreflexive Banach spaces by using Wijsman con-
vergence of sets. � 1998 Academic Press

1. INTRODUCTION

The problem of continuity for the mapping A � PA (x) was first con-
sidered by Brosowski, Deutsch, and Nu� rnberger [2]. They considered a
family [At]t # T of subsets of a normed linear space X parametrized by a
topological space T and studied the continuity of t � PAt

(x). In 1984,
Tsukada [12] discussed the above problem but with a nonparametrized
method. He proved that if the Banach space X is reflexive strictly convex,
then when the closed convex sets [An] converge to A in the Mosco sense
it is implied that [PAn

(x)] weakly converges to PA (x) for each x # X.
Moreover if X has the property (H), the convergence is in the norm.
Papageorgion and Kandilakis [8] generalized the work of Tsukada and
studied the convergence of =-approximations. Recently, the author and Nan
[14] gave a further description on the convergence of best approximations.
In these convergence theorems for best approximations, one standard con-
dition is that the Banach space X is reflexive. The purpose of this paper is
to establish new convergence results for best approximations in a non-
reflexive Banach space. For this purpose, we need a notion of strong
Wijsman convergence for the sequence of nonempty sets. Under the
assumption of the strong Wijsman convergence we give two continuity
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theorems of the mapping P: (x, A) � PA (x) in nonreflexive spaces.
Moreover we prove that in a reflexive Banach space, if the sequence of
closed convex subsets [An] converges to A in the Mosco sense, then [An]
converges to A in the strong Wijsman sense. As a consequence, our results
are natural extensions of the existing results on the continuity of metric
projections PA (x) (as a set-valued mapping of (x, A)) in a reflexive Banach
space [12�16] to nonreflexive Banach spaces.

2. NOTATIONS AND DEFINITIONS

Let [An] be a sequence of nonempty subsets of a Banach space. Define
the weak limit superior of the sequence [An] to be the set

w-lim
n

An=[x # X : x=w-lim
n

xnk
, xnk

# Ank
, k�1]

and the strong limit inferior of [An] to be the set

s-�
n

An=[x # X : x=lim
n

xn , xn # An , n�1].

A sequence of nonempty subsets [An] of a Banach space X is said to
converge to a set A in the Mosco sense if s-�

n
An=w-lim

n
An=A. We will

write lim
n M An=A or An w�M A.

A sequence of nonempty subsets [An] of a Banach space X is said to
converge to a set A in the Wijsman sense if lim

n
d(x, An)=d(x, A) for each

x in X, where d(x, A)=infy # A &x& y&. We will write lim
n W An=A or

An w�W A.
Let X be a Banach space and A be a subset of X. PA (x) denotes the set

of all best approximations to x from A; i.e., PA (x)=[ y # A : &x& y&=
d(x, A)]. The set A is proximinal (resp. Chebyshev) if PA (x) contains at
least (resp. exactly) one point for each x in X.

For any =>0, we say that an element z in A is an =-approximation of
x in A if &x&z&�d(x, A)+=. We will denote the set of all =-approxima-
tions by P =

A(x).
Let U(X ) denote the closed unit ball of a Banach space X and let S(X )

denote the unit sphere of X. Also co(B) means the convex hull of B.
A sequence of nonempty subsets [An] of a Banach space X is said to

converge to a set A in the strong Wijsman sense, if for each fixed x in X
and any =n � 0+ as n � �, we have lim

n
&x&un&=d(x, A) whenever un #

co(��
k=n P =k

Ak
(x)) for n�1. We will write s-lim

n W An=A or An w�sW A.
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Clearly, [An] converges to A in the Wijsman sense if and only if for each x
in X and any =n � 0+ as n � �, we have lim

n
&x&an&=d(x, A) whenever

an # P=n
An

(x) for n�1. Furthermore, s-lim
n W An=A implies lim

n W An=A.
Let C be the set of all proximinal subsets of X.
The mapping x � PA (x) is said to be (weakly) upper semicontinuous if for

each fixed x in X and any (weakly) open set W#PA (x), there exists a
neighborhood U of x such that PA (U)/W.

We say that the mapping P: (x, A) � PA (x) is (weakly) upper semicon-
tinuous at (x, A) in the strong Wijsman sense if, given a (weakly) open set
W containing PA (x), any xn � x, and any sequence [An]/C with
An w�sW A, there exists a corresponding integer N such that PAn

(xn)/W for
all n�N.

The mapping P: (x, A) � PA (x) is called (weakly) upper semicontinuous
in the strong Wijsman sense if it is (weakly) upper semicontinuous at each
(x, A) in the strong Wijsman sense.

In [13], a Banach space X is said to have the proper (C-I) (resp. (C-II)
or (C-III)), if x # S(X), [xn] in U(X) with the property that for each $>0
there exists an integer N($) such that

co([x] _ [xn : n�N($)]) & (1&$) U(X)=<,

then lim
n

&xn&x&=0 (resp. [xn] is relatively compact or [xn] is relatively
weakly compact).

We say that a Banach space X has the property (H), if for sequences on
the unit sphere of X weak convergence is equivalent to norm convergence.

We also mention some convexity properties for X. These definitions can be
found in [4, 13, 15].

A Banach space X is locally nearly uniformly convex (LNUC) if for each
x # S(X) and each =>0, there is a positive constant $=$(x, =) such that for
all sequences [xn] in U(X) with inf [&xn&xm&: n{m]>=, we have

co([x] _ [xn : n�1]) & (1&$) U(X){<.

A Banach space X is compactly locally fully k rotund (CL-kR), if for any
sequence [xn] in U(X) and for any x # S(X) with

lim
n1, ..., nk � �

&x+xn1
+ } } } +xnk

&=k+1,

then [xn] is relatively compact.
Replacing the phrase ``[xn] is relatively compact'' by ``[xn] is relatively

weakly compact,'' X is called a (WCL-kR) space.
Finally, we give some results concerned with the strong Wijsman con-

vergence of sets and the properties (C-II) and (C-III). They will be used in
Section 3.
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Proposition 2.1. Let X be a reflexive Banach space. If An and A are non-
empty closed convex subsets of X, then lim

n M An=A implies s-lim
n W An=A.

Proof. We prove the proposition by contradiction. Assume the contrary,
that there exists an x0 and sequences [=n], [uni

] with uni
# co(��

k=ni
P =k

Ak
(x0))

such that =n � 0+ as n � �, but | &x0&uni
&&d(x0 , A)|>'>0 for i�1. Let

uni
=�mi

j=1 *(i)
j a (i)

j where *(i)
j �0, �mi

j=1 * (i)
j =1, a (i)

j # P =k
Ak

(x0) for some k�ni ,
j=1, 2, ..., mi , i�1. Then

&x0&uni
&� :

mi

j=1

* (i)
j &x0&a(i)

j &

�sup
k�ni

[d(x0 , Ak)+=k] for all i.

It is known from [1] that for a reflexive Banach space, lim
n M An=A

implies lim
n W An=A. It follows that [uni

] and [a (i)
j : j=1, 2, ..., mi , i�1] are

bounded and lim
i

&x0&uni
&�d(x0 , A). Thus we can select a subsequence,

denoted by [uni
] again, such that

lim
i

&x0&uni
&<#<d(x0 , A).

By the assumption that X is reflexive, [uni
] has a weakly convergent sub-

sequence. Without loss of generality, we may assume w-lim
i

uni
= y. If y # A,

then d(x0 , A)�&x0& y&��
i

&x0&uni
&<#<d(x0 , A). This is impossible.

Therefore y � A. By the strong separation theorem, there is an x0* # X* such
that

x*0 ( y)>:>sup
z # A

x*0 (z).

Since y=w-lim
i

uni
, we can assume that x*0 (uni

)>: for all i. Since uni
=

�mi
j=1 * (i)

j a (i)
j , there exists an index ji , 1� ji�mi , such that x*0 (a (i)

ji
)>:.

Observe that [a (i)
ji

] is bounded. Hence [a (i)
ji

] has a weakly convergent sub-
sequence; for convenience, assume z0=w-lim

i
a (i)

ji
. Then x*0 (z0)=

lim
i

x*0 (a (i)
ji

)�:. However, by the assumption that lim
n M An=A, we obtain

z0 # w-lim
n

An=A. Consequently, x*0 (z0)�supz # A x*0 (z)<:. This is a con-
tradiction. Therefore s-lim

n W An=A.

Proposition 2.2. If [An] is an increasing sequence of nonempty convex
subsets of a Banach space X, then s-lim

n W An=��
n=1 An . Moreover,

lim
n M An=��

n=1 An .
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Proof. Let x # X. We first prove that lim
n

d(x, An)=d(x, ��
n=1 An ). Since

[An] is increasing, obviously lim
n

d(x, An)�d(x, ��
n=1 An ). On the other

hand, if y # ��
n=1 An , we can choose yk # ��

n=1 An such that &y& yk&<1�k
for k�1. Since A1 /A2 /..., we have yk # An for all n large enough. Thus,

&x& y&�&x& yk&&&y& yk&�d(x, An)&1�k

for all n large enough and all k, which implies that

d \x, .
�

n=1

An+�lim
n

d(x, An).

Therefore lim
n

d(x, An)=d(x, ��
n=1 An ).

Now we prove s-lim
n W An=��

n=1 An . Let x # X, =n � 0+ as n � � and let
un # co(��

k=n P =k
Ak

(x)), n�1. As in the proof of Proposition 2.1, we can
derive that

&x&un&�sup
k�n

[d(x, Ak)+=k] (1)

for all n. Since [An] is an increasing sequence of convex sets, clearly
co(��

k=n Ak)=��
k=n Ak . Hence un # Ak for all k large enough. This means

that

&x&un&�d(x, Ak) (2)

for all k large enough. From (1), (2), and lim
n

d(x, An)=d(x, ��
n=1 An ), it

follows that lim
n

&x&un&=d(x, ��
n=1 An ). So s-lim

n W An=��
n=1An .

By using the fact that lim
n

d(x, An)=d(x, ��
n=1 An ) and ��

n=1 An is
convex, it is easy to verify that w-lim

n
An /��

n=1 An /s-�
n

An . Hence
lim

n M An=��
n=1 An .

In [13], the following statements have been proved: (i) Every (LNUC) or
(CL-kR) Banach space has the property (C-II); (ii) Every (WCL-kR) space
has the property (C-III).

For a reflexive Banach space, we have the following proposition about the
property (C-II).

Proposition 2.3. Let X be a reflexive Banach space and let X have the
property (H). Then X has the property (C-II).

Proof. Let x # S(X) and [xn]/U(X) be such that for each $>0, there
exists an integer N($) satisfying

co([x] _ [xn : n�N($)]) & (1&$) U(X)=<.
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Since X is reflexive, [xn] is relatively weakly compact. Suppose that [xni
] is

a weakly convergent subsequence of [xn] and w-lim
i

xni
=x0 . It is known

that any closed convex set is weakly closed. So x0 # co([x] _
[xn : n�N($)]). Hence &x0&�1&$ for each $>0. Therefore we have
&x0&=1. Because X has the property (H), it follows that xni

� x0 . This
proves that [xn] is relatively compact.

3. CONVERGENCE OF BEST APPROXIMATIONS
IN NONREFLEXIVE BANACH SPACES

Let X be a Banach space and X* be the dual space of X.

Lemma 3.1. Let X be a Banach space with the property (C-II), An /X
(n�1), A in C, and s-lim

n W An=A. If xn � x and yn # PAn
(xn) (n�1), then

[ yn] is relatively compact and its convergent subsequence converges to an ele-
ment of PA(x).

Proof. Let x # X, xn � x, yn # PAn
(xn), n=1, 2, ... . Clearly, d(x, An)�

&x& yn& � &x&xn& + &xn& yn& = &x&xn& + d(xn , An) � &x&xn& +
|d(xn , An)&d(x, An)|+d(x, An). By [10] or [12, Remark, 302], for any
nonempty subset A of X, d( } , A) is uniformly continuous and |d(x, A)&
d( y, A)|�&x& y& for any x, y # X. So we obtain that

d(x, An)�&x& yn&�2 &x&xn&+d(x, An) (3)

for all n. Since s-lim
n W An=A implies lim

n W An=A, we derive from (3) that

lim
n

&x& yn&=d(x, A). (4)

Fix z # PA(x). Since lim
n W An=A, so lim

n
d(z, An)=d(z, A)=0. Thus there

exists a sequence zn # An , n�1, such that lim
n

&zn&z&=0. Let =n=
2 &x&xn&+&z&zn&+|d(x, An)&d(x, A)|, and :n=d(x, co(��

k=n P =k
Ak

(x))).
By (3), &x& yn&�d(x, An)+=n . This, along with yn # An , implies
yn # P=n

An
(x). Therefore :n�&x& yn&. Since [:n] is increasing, by (4) we

obtain lim
n

:n�d(x, A). For each n, select un # co(��
k=n P =k

Ak
(x)) with

&x&un&<d(x, co(��
k=n P =k

Ak
(x)))+1�n. It follows from s-lim

n W An=A that
lim

n
&x&un&=d(x, A). This shows that

lim
n

:n=d(x, A). (5)
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Observe that &x & zn& � &x & z& + &z & zn& � &z & zn& + |d(x, An) &
d(x, A)|+d(x, An)�d(x, An)+=n for all n. Therefore zn # P =n

An
(x) for n�1.

Suppose d(x, A){0. Given $>0, in view of (5) and lim
n

&z&zzn&=0, there
exists an integer N1($) such that when n�N1($), we have

:n�d(x, A)(1&$�4), &z&zn&�d(x, A) } $�4.

Further, if *i�0, i=0, 1, ..., m, �m
i=0 *i=1, and N1($)�n0�n1� } } } �nm ,

we get that &x&(*0z+*1 yn1
+ } } } +*m ynm

)&�&x&(*0zn0
+*1 yn1

+ } } } +
*m ynm

)&&*0 &z&zn0
&�:n0

&*0 &z&zn0
&�d(x, A)(1&$�2). Thus,

"*0

x&z
d(x, A)

+ } } } +*m

x& ynm

d(x, A)"�1&$�2.

By lim
n

d(x, An)=d(x, A) and (4), there exists an integer N($) (�N1($))
such that

} 1
d(x, A)

&
1

d(x, An)+2 &x&xn& } sup
k

&x& yk&<$�2

for n�N($). Thus if N($)�n1� } } } �nm , we get

"*0

x&z
d(x, A)

+*1

x& yn1

d(x, An1
)+2 &x&xn1

&

+ } } } +*m

x& ynm

d(x, Anm
)+2 &x&xnm

&"
� "*0

x&z
d(x, A)

+*1

x& yn1

d(x, A)
+ } } } +*m

x& ynm

d(X, A)"
& :

m

i=1

*i } 1
d(x, A)

&
1

d(x, Ani
)+2 &x&xni

& } &x& yni
&

>1&$�2&$�2=1&$.

This shows that for each fixed $>0, there exists an integer N($) such that

co \{ x&z
d(x, A)=_ { x& yn

d(x, An)+2 &x&xn&
: n�N($)=+

& (1&$) U(X)=<. (6)

By (3) and the assumption that X has the property (C-II), we obtain that
[(x& yn)�(d(x, An)+2 &x&xn&)] is relatively compact. Further [ yn] is
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relatively compact. If d(x, A)=0, from (4) it follows that [ yn] is a con-
vergent sequence. Of course it is relatively compact. Let yni

� y. Observe
that d( y, Ani

)�&y& yni
& � 0 and d( y, A)=lim

i
d( y, Ani

), so d( y, A)=0.

Since any proximinal set is closed, hence y # A. By (4) we have &x& y&=
lim

i
&x& yni

&=d(x, A); thus y # PA(x).

Theorem 3.1. Let X be a Banach space with the property (C-II), and
A # C. Then the mapping P: (x, A) � PA(x) is upper semicontinuous in the
strong Wijsman sense.

Proof. Assume the contrary, that Theorem 3.1 is not true. Then for
some (x0 , A0) and a norm open set W0 #PA0

(x0) and corresponding con-
vergent sequences xn � x0 , s-lim

n W An=A0 , we can choose a subsequence
[ni] of [n] such that PAni

(xni
) /3 W0 for all i. Let yni

# PAni
(xni

)"W0 , i�1.
By Lemma 3.1 it follows that [ yni

] has a subsequence which converges to
an element of PA0

(x0). This means that there exists yni
# W0 for some i large

enough. This is impossible. This completes the proof of Theorem 3.1.

An immediate consequence of Theorem 3.1 is the following corollary.

Corollary 3.1 [13]. Let X be a Banach space with the property (C-II)
and A be a proximinal convex subset in X. Then the mapping x � PA(x) is
upper semicontinuous.

Using Theorem 3.1 and Propositions 2.1 and 2.3 we derive the following
corollaries.

Corollary 3.2 [14]. Let X be a reflexive Banach space with the
property (H). If An (n�1) and A are closed convex subsets of X with lim

n M

An=A, then for each x in X and all [xn] we have lim
n

(supy # PAn
(xn)

d( y, PA(x)))=0 whenever xn � x.

Corollary 3.3 [12]. Let X be a strictly convex reflexive Banach space
with the property (H). If An (n�1) and A are closed convex subsets of X
with lim

n M An=A, then lim
n

&PAn
(x)&PA(x)&=0 for all x in X.

Lemma 3.2. Let X be a Banach space with the property (C-III), An /X
(n�1), A in C and s-lim

n W An=A. If xn � x and yn # PAn
(xn) (n�1) then

[ yn] is relatively weakly compact. If in addition lim
n M An=A then the

weakly convergent subsequence of [ yn] converges to an element of PA(x)
weakly.
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Proof. The proof of the first part is the same as Lemma 3.1. Now we
prove the second part. Let [ yni

] be a weakly convergent subsequence of
[ yn] and w-lim

i
yni

= y. Since lim
n M An=A, so y # A. By the weak lower

semicontinuity of the norm and (4) we can write that

&x& y&��
i

&x& yni
&=d(x, A).

But recall that y # A. So y # PA(x).
A result of Papageorgion and Kandilakis [8, Proposition 2.2] tells us

that in a general Banach space, if lim
n M An=A then w-lim

n
PAn

(x)/PA(x)

for all x in X. Their proof also applies to the following case: If lim
n M An=A

and xn � x, then w-lim
n

PAn
(xn)/PA(x). Further, the second part of

Lemma 3.2 can be derived immediately by Proposition 2.2 of [8].

If s-lim
n W An=lim

n M An=A, we will write An ww�sW&M A. Following weak
upper semicontinuity in the strong Wijsman sense, we can similarly intro-
duce the concept of weak upper semicontinuity in the strong Wijsman�
Mosco sense for the mapping P: (x, A) � PA(x).

Theorem 3.2. Let X be a Banach space with the property (C-III), and
A in C. Then the mapping P: (x, A) � PA (x) is weakly upper semicontinuous
in the strong Wijsman�Mosco sense.

If, in addition X is strictly convex and A is convex, then the mapping
P: (x, A) � PA (x) is weakly continuous in the strong Wijsman sense.

Proof. The weak upper semicontinuity of P in the strong Wijsman�
Mosco sense can be proved by Lemma 3.2. The proof proceeds as in
Theorem 3.1.

Next we prove the weak continuity of P in the strong Wijsman sense. Let
u # S(X) and [un] in U(X ) with the property that for each $>0 there
exists an integer N($) such that

co([u] _ [un : n�N($)]) & (1&$) U(X )=<.

We will prove w-lim
n

un=u. Since X has the property (C-III), [un] has a
weakly convergent subsequence. Let w-lim

i
uni

=u0 . Since u0 is in

co([un : n�N($)]), so 1
2 (u+u0) # co([u] _ [un : n�N($)]) for every $>0.

Therefore we obtain that u0 # S(X) and &1
2 (u+u0)&=1. From the strict

convexity of X it follows u=u0 ; thus, w-lim
n

un=u.
Now let xn � x and s-lim

n W An=A, where An (n�1) and A are
proximinal convex subsets of X. If yn # PAn

(xn) for every n and z # PA (x),
from the proof of Lemma 3.1 we know that when x � A, then for each
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fixed $>0 there is an integer N($) such that co([(x&z)�d(x, A)] _
[(x& yn)�(d(x, An)+2 &x&xn&) : n�N($)]) & (1&$) U(X )=<. Conse-
quently, w-lim

n
yn=z # PA (x). If x # A, by (4) in Lemma 3.1 we have

yn � x # PA (x). Observe that if X is strictly convex and A is a proximinal
convex subset, then A is a Chebyshev set. Therefore w-lim

n
PAn

(xn)=PA (x).
Recall that a reflexive Banach space has the property (C-III) and

lim
n M An=A implies s-lim

n W An=A. Thus we have the following corollaries
of Theorem 3.2.

Corollary 3.4 [12]. Let X be a reflexive and strictly convex Banach
space, An (n�1) and let A be closed convex subsets of X with lim

n M An=A.
Then w-lim

n
PAn

(x)=PA (x) for each x in X.

Corollary 3.5 [13]. Let X be a Banach space with the property
(C-III) and A be a proximinal convex subset in X. Then the mapping
x � PA (x) is weakly upper semicontinuous.

Remark 3.1. Observe that a Banach space X has the property (C-I) if
and only if X has the property (C-II) and X is strictly convex. By
Theorem 3.1 it is clear that if X has the property (C-I), An (n�1) and A
are proximinal convex sets with s-lim

n W An=A, then for each x in X,
lim

n
&PAn

(xn)&PA (x)&=0 whenever xn � x.

Remark 3.2. Theorem 3.1 is true for (LNUC) or (CL-kR) and
Theorem 3.2 is true for (WCL-kR).

Remark 3.3. In [11], F. Sullivan introduced the locally k uniformly
rotund (Lk-UR) spaces. He proved that if M is a Chebyshev subspace of
the (L2-UR) space, then the mapping x � PM (x) is norm continuous. In
1985, Yu Xintai [16] extended Sullivan's theorem [11] to (Lk-UR) spaces.
From Theorem 1 of [6] it is known that every (Lk-UR) space is (CL-kR).
According to Remark 3.2 we get that Theorem 3.1 is true replacing the
property (C-II) by (Lk-UR). Consequently, our results generalize the con-
tinuity theorems of [11, 16].
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